
arithmetical skills. However, they neglect the neo-Fregean alternative
axiomatization of arithmetic, based on Hume’s principle. Frege
arithmetic is arguably a more plausible start for a top-down approach
in the psychological study of mathematical cognition than Peano
arithmetic.

In the early days of developmental psychology, psychologists
were in close contact with logicians and mathematicians
working on the foundations of mathematics. Karl and Charlotte
Bühler participated in the discussions of the Vienna Circle,
which included among its members, Rudolf Carnap, Kurt
Gödel, and Karl Menger. Piaget’s work was heavily influenced
by Bourbaki, the French structuralist school, and Piaget had
many discussions with Jean Dieudonné, one of its leading
members (see Piaget 1968; cf. Aczel 2007). In recent decades,
developmental psychology and foundational work in mathemat-
ics have grown apart, sometimes resulting in outright antagonism
(Dehaene 1997). Rips et al. restore the connection between two
research fields. In their top-down approach, the cognitive math
principles are based on the Dedekind-Peano axioms. They
argue that these axioms or mathematically equivalent minor vari-
ations (e.g., the Least Number Principle) should be studied more
seriously by psychologists. My major worry is that they have
missed an important new development in foundational studies
in mathematics.
Rips et al. briefly consider Frege’s conception of numbers as

sets of all equinumerous sets of objects, and rightly conclude
that this view is untenable (Frege 1884/1974; 1893/1967).
Frege’s system was flawed, because of the inconsistency of the
notorious Law V. However, Crispin Wright (1983) pointed out
that Frege’s arithmetic can be derived from Hume’s principle
(HP). Frege (1893/1967) contains all the essential inferences
for a valid deduction of the laws of arithmetic, and Frege’s incon-
sistent Law V can thus be sidestepped. The second-order Peano
postulates can be derived in a consistent second-order system
with only one extra-logical predicate N (“is the number of”)
and one non-logical axiom HP, stating that the number of Fs is
equal to the number of Gs, in case there is a one-to-one corre-
spondence between the Fs and the Gs. This result is known as
Frege’s theorem, and it implies that HP can serve as the basis
of arithmetic (Heck 1993; Zalta 2008).
From a mathematical point of view, second-order Peano arith-

metic (PA) and Frege arithmetic (FA) (second-order logicþHP)
are almost equivalent (for their relative strength, see, e.g., Heck
2000). From an epistemological or cognitive point of view, PA
and FA are very different. The basic concept in PA is the succes-
sor relation. PA is thus strongly related to the ordinal conception
of number or to the cognitive abilities of enumeration and count-
ing. FA, on the other hand, is based on equinumerosity, or one-
to-one correspondence. The basic cognitive ability underlying
HP is the ability to judge whether the objects of two sets can
be put into a one-to-one relation, or, the ability to relate every
object of a set to a single object of another set. For example, a
set of knives is equinumerous to a set of forks if one can form
pairs of forks and knives, without remaining forks or knives.
Equinumerosity judgments are thus possible without enumerat-
ing the two collections. In the philosophy of mathematics, this
discovery has triggered a lively epistemological debate on the
question whether HP is an a priori or conceptual truth (Boolos
1997; Demopoulos 1998; Heck 2000). Neo-Fregeans claim that
HP is central in mathematical knowledge.
The problem with the neo-Fregean program is that its claims

about mathematical knowledge are not based on psychological
evidence. Nevertheless, HP and Frege’s theorem may be quite
important in the empirical study of mathematical cognition.
Since the 1970s, psychologists have regarded counting as the
basis of numerical skills. Gelman and colleagues have argued
that three principles underlie the ability to count: the one-to-
one correspondence principle, the stable-order principle, and
the cardinality principle (Gelman & Gallistel 1978; Gelman &
Greeno 1989; Gelman & Meck 1983; Gelman et al. 1986).

These principles constitute an enumeration procedure and
suffice to explain various numerical skills. However, the fact
that these studies are largely based on the numerical skills of
infants that have been taught to count at a very early age may
have biased this research. It is perfectly possible that the ability
to make one-to-one correspondence judgments (HP) is more
basic and relevant than has generally been assumed. Two (arbi-
trarily chosen) examples should suffice to illustrate that HP is
often overlooked as an explanation for certain numerical abilities.
Gordon (2004) carried out several matching tasks during his

stay with the Pirahã. Gordon would put a certain number of
objects (1–10) below a line, and the participant had to put an
equal amount of objects on the other side of the line. In
general, there is a considerable decrease in performance for
larger numbers, with one striking exception, namely, the line
match. This would fit well with the participants having mastered
a one-to-one correspondence procedure. As Gordon tampered
with the matching condition, performance decreased. Gordon’s
results clearly indicate that non-numerates can employ a one-
to-one correspondence procedure, without using enumeration
(despite his claim to the contrary; Gordon 2004, p. 497). The
uneven line match is especially noteworthy. If rectangles below
the line were put in a line with unequal distances, performance
was very good until four, and then dropped below 50% for five
and six, and later went up again to almost correct performance
for higher numbers. An explanation might be that for small
numbers, the Pirahã use the more or less precise subitizing,
with the effect that performance decreases rapidly above three.
For larger sets, a one-to-one correspondence procedure takes
over, leading to almost perfect performance. This is a hypothesis
that can rather easily be tested, because one would assume that
participants can be taught to use this strategy also for smaller
numbers, with a resulting overall excellent performance.
Second, Jordan and Brannon (2006) have demonstrated that 7-

month-old infants can already recognize cross-modal one-to-one
correspondences for low numerosities. Although Brannon and
Jordan explain this result as evidence for a number represen-
tational system, it can more easily be interpreted as the
mastery of HP.
In conclusion, the claim made by Rips et al. that math

schemas, roughly based on the Dedekind-Peano axioms, may
be important in the study of (mature) mathematical cognition
deserves further empirical scrutiny. However, there is a non-
trivial, almost equivalent axiomatic approach that is arguably
very different from a cognitive point of view. In a top-down
approach towards mathematical cognition focusing on knowledge
of mathematical principles, it seems more promising to start with
a psychological study of one-to-one correspondence (FA or
Heck’s roughly equivalent system; Heck 2000), than with
Peano’s mathematical induction or commutativity.
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number concepts: An epidemiological
perspective

doi:10.1017/S0140525X08005657

Helen De Cruz
Centre for Logic and Philosophy of Science, Free University of Brussels, 1050
Brussels, Belgium; and Centre for Logic and Analytical Philosophy, University
of Leuven, 3000 Leuven, Belgium.

Helen.DeCruz@hiw.kuleuven.be

http://www.vub.ac.be/CLWF/members/helen/index.shtml

Abstract: The failure of current bootstrapping accounts to explain the
emergence of the concept of natural numbers does not entail that no link
exists between intuitive and formal number concepts. The epidemiology
of representations allows us to explain similarities between intuitive and
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formal number concepts without requiring that the latter are directly
constructed from the former.

Rips et al. have rightly pointed out a lack of fit between the prop-
erties of the natural numbers as defined by axiomatic systems in
number theory and the unlearned representations of magnitude
in infants. However, to conclude from this that there is “no
dependency whatsoever” (sect. 6, para. 2) between them seems
premature. Typically, the domains of intuitive knowledge that
developmental psychologists have uncovered (such as intuitive
psychology or number) are underdetermined. For example,
although children are born with cognitive biases that lead them
to attend to the actions and goals of others, it remains as yet
unclear how they reliably develop a fully-fledged belief-desire
psychology that differentiates an agent’s mental states from the
actual state of the world.
As an alternative to Rips et al.’s and to traditional bootstrap-

ping approaches, it may be fruitful to examine number from
the perspective of the epidemiology of representations. Its
basic idea is that there is a strong causal link between the
mental representations of the individual members of a culture
and the public representations they share – in this case natural
number concepts and their symbolic denotations (number
words, numerical notation systems). To acquire a novel concept,
learners partly draw on pre-existing knowledge. Thus, each time
a cultural representation is transmitted, it has to pass the bottle-
neck of the pool of mental representations within the minds of
individual learners. Representations with a poor fit to the pool
of knowledge are less likely to be understood, and hence trans-
mitted, than those with a good fit. Cognitive biases that are uni-
versal in humans likely play an important role in this process. As
Nichols (2002) has demonstrated for etiquette norms, our uni-
versal feel of disgust for bodily excretions makes rules that
limit contact with them (e.g., prohibitions to spit in public)
more attractive than norms that do not stir our evolved emotional
responses (e.g., placement of the napkin to the left or right of the
plate). Importantly, Nichols (2002) does not claim that etiquette
norms are directly based on or constructed from universal
human predispositions. Rather, their good fit with our evolved
drive to avoid disgusting situations has promoted their cultural
success.
In the case of number, unlearned quantificational skills might

similarly constrain and guide the cultural transmission of numeri-
cal concepts. If number concepts were based on axiom-like
schemas, as Rips et al. suggest, we would expect some cultures
to develop nonstandard numbers – which satisfy Peano’s
axioms in all respects but which we would yet not call
numbers; however, apart from Western mathematics, there is
no evidence that nonstandard models of arithmetic were ever
developed. Unlearned intuitions of number may promote the
cultural fitness of some numerical representations in favor of
others. Evidence from educational psychology (Vlassis 2004)
suggests that adolescents have difficulties grasping the concept
of negative integers: they make more mistakes when solving
equations that involve negative terms, and especially those that
yield negative solutions. Although adults can compare the magni-
tudes of pairs of natural numbers quasi-automatically, their per-
formance drops markedly when one or both digits are negative
(Fischer 2003). These difficulties are hard to explain from a
purely formal point of view, as the negative integers’ properties
are in many respects similar to the natural numbers’, such as
closure (i.e., aþ b is a natural number/integer for any natural
number/integer a and b), commutativity, and associativity.
From an ecological point of view, however, conceptualizing nega-
tive integers is less relevant for organisms than conceptualizing
positive quantities. If our evolved intuitions of number continue
to play a role in learning processes, it becomes easier to under-
stand why negative integers were historically less widespread
than positive integers. Indeed, negative numbers were actively
resisted despite their usefulness in calculations in cultures as

disparate as 16th-century Europe, Han-dynasty China, and the
medieval Islamic world.
What, then, is the relationship between our innate magnitude

representations and natural numbers? One possibility which
seems consistent with anthropological data is that although
natural numbers are supported by unlearned inductive infer-
ences (De Cruz 2006), there is considerable cultural variation
in the degree to which public representations of number actually
support them. For example, humans are equipped with the
ability to discriminate between continuous and discrete quan-
tities (Castelli et al. 2006). In some cultures (e.g., Western
culture), children are confronted with a variety of symbolical rep-
resentations for number, such as number words, Arabic digits, or
even finger counting. These public representations provide exter-
nal instantiations of the discreteness of natural numbers, leading
children to understand that large numbers that are close together
are yet distinct. Indeed, Western 5-year-olds who typically only
count to 20 infer that numbers above their counting range
apply to specific, unique cardinal values: if a set has 61
members, it cannot contain 65 elements (Lipton & Spelke
2006). In contrast, in some Amazonian or Australian aboriginal
cultures this distinction is not made, leading people growing up
in these communities to rely on approximate numerical skills
only. Consequently, they cannot discriminate between quantities
if the ratio between them is small. While our intuitive quantifi-
cation skills are not sufficient for natural number concept for-
mation, they do support inductive inferences that promote an
understanding of natural numbers in cultures that use symbolic
representations that denote exact cardinalities.
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Abstract:Rips et al.’s arguments for rejectingbasicnumber representations
as a precursor of the natural number system are exclusively based on analog
number coding.We argue that these argumentsdonot apply toplacecoding,
a type of basic number representation that is not considered by Rips et al.

We commend Rips et al.’s initiative to put to the fore how a con-
ceptual understanding of the natural numbers is achieved by our
cognitive system. This is a necessary step towards the integration
of scientific progress in the now largely separate domains of basic
number representations and more complex forms of numerical
cognition. In this respect, it is a crucial question whether basic
number representations constitute the basis for the development
of a complete knowledge of the natural number system.
We do not agree, however, with the authors’ conclusion that

magnitude representations cannot be the precursor of under-
standing the properties of the natural number system. Our
main point is that the authors are selective in regarding the mag-
nitude representations they envisage. The authors’ argument is
exclusively built on analog magnitude representations. Although
the biological reality of analog coding has been demonstrated
(Roitman et al. 2007), there are reasons to believe that its
functional importance in numerical cognition is limited. In a
behavioral priming experiment, we have shown that in a
naming task, dot displays evoke a priming pattern that is consist-
ent with an analog magnitude code, but that Arabic digit primes
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