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An Extended Mind Perspective on
Natural Number Representation

Helen De Cruz

Experimental studies indicate that nonhuman animals and infants represent

numerosities above three or four approximately and that their mental number line is

logarithmic rather than linear. In contrast, human children from most cultures gradually

acquire the capacity to denote exact cardinal values. To explain this difference, I take

an extended mind perspective, arguing that the distinctly human ability to use external

representations as a complement for internal cognitive operations enables us to represent

natural numbers. Reviewing neuroscientific, developmental, and anthropological

evidence, I argue that the use of external media that represent natural numbers

(like number words, body parts, tokens or numerals) influences the functional

architecture of the brain, which suggests a two-way traffic between the brain and

cultural public representations.

Keywords: Cognitive Scaffolding; Counting; Extended Mind; Hebbian Learning; Natural

Numbers; Symbolic Number Representation

1. Introduction: The Bounds of Cognition

Human cognition is characterized by an extensive interaction between brain and

external environment. We are part of distributed cognitive systems, which include

other people’s minds, external storage devices such as books, and instruments such as

pocket calculators. Delegating cognitive operations to the external world clearly

enhances our cognitive capacities: multiple-digit multiplications with pen and paper

are far easier than mental arithmetic. Moreover, without external cognitive artifacts

many concepts (such as HELIOCENTRISM) or solutions to computational problems
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(such as algebra) are not just harder to obtain, they are unthinkable. Despite this

importance of external media in human cognition, relatively little research has been

conducted to clarify how the brain and the environment interact to enhance and

extend our cognitive capacities.
As a result, there is considerable disagreement on the viability of the extended

mind as a philosophical concept. An ongoing debate focuses on whether cognition

actually takes place outside the brain. While Clark and Chalmers (1998) assert

that there is little difference between an Alzheimer patient who consults his notebook

to remember the location and date of an exhibition and a neurologically normal

person who consults her memory to recall the same occasion, Adams and Aizawa

(2001, p. 57) object that this opens the threat of cognitive bloat: cognition oozing

into everything that is somehow causally connected to it. Donald’s (1991) classic

essay on human cognitive evolution presents another possible view: he claims that

the extensive use of writing and other material symbols results in a radical

restructuring of the brain during ontogeny. This view, however, seems incompatible

with modular, nativist accounts of cognition that many psychologists and

philosophers of mind endorse (e.g., Carruthers, 2002). If conceptual information is

processed through a set of innately channeled conceptual modules, how could

external media influence the way we think about such domains?

The aim of this paper is to come to a more precise formulation of brain-world

interactions through an examination of the various ways in which natural numbers are

represented. My starting point is a fundamental difference between numerical

representations in humans and nonhuman animals: humans are unique in their ability

to denote exact cardinal values above three or four. Although number words often play

a significant role in the conceptual development of natural numbers, I will argue that

natural language is neither necessary nor sufficient for their development. I develop

a model of multiple cognitive pathways that lead to successful natural number

representation, including tokens (e.g., abacus beads, tallies), body parts, numerical

notation systems and gestures. Taking evidence from neuropsychology, anthropology

and history of mathematics, I argue that these cognitive pathways influence the

structure of the human brain, which supports the view that culture influences cognitive

architecture without repudiating domain-specific accounts of human cognition.

2. Domain-Specificity in Numerical Representations

A growing body of experimental and neuropsychological literature suggests that

human numerical competence is rooted in cognitive evolution and that we possess

some elementary innate numerical skills that we share with other animals. Animals

spontaneously use numerical cues in ecologically relevant tasks, such as making

foraging decisions. When given the choice between two groups of live prey (two or

three flies), red-backed salamanders choose the larger quantity (Uller, Jaeger, Guidry,

& Martin, 2003). Lionesses (McComb, Packer, & Pusey, 1994) decide whether or not

to attack an intruding group, based on a comparison of the number of unfamiliar
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individuals they hear roaring and the number of members of their own pride present.

Similar capacities have been found in infants, prior to schooling or language
acquisition. Newborns can discriminate small collections up to three objects (Antell

& Keating, 1983), and five-month-olds can predict the outcome of simple additions
or subtractions, such as 1þ 1¼ 2 (Wynn, 1992).

Neuropsychological studies indicate that number processing depends on
specialized neural circuitry. The bilateral posterior parietal cortex is reliably activated

by numerical tasks such as mental arithmetic (e.g., Dehaene, Spelke, Pinel, Stanescu,
& Tsivkin, 1999) and even by elementary tasks that do not involve calculation,
such as the presentation of single arabic digits (Eger, Sterzer, Russ, Giraud, &

Kleinschmidt, 2003) or collections of dots (Cantlon, Brannon, Carter, & Pelphrey,
2006). Patients with brain lesions in number-sensitive areas, such as the intraparietal

sulci (e.g., Lemer, Dehaene, Spelke, & Cohen, 2003) are poor at counting and
arithmetic. Studies that measure the activation of single neurons in rhesus monkeys

(e.g., Nieder, Diester, & Tudusciuc, 2006) show that individual neurons within the
horizontal segment of the intraparietal sulci respond selectively to changes in number

in a visual display. These neurons exhibit a peak activity to a specific quantity and
gradually decrease in activity as the presented number differs from that of the
preferred quantity, e.g., a neuron that responds to two items responds less to three

items, and even less to four or more items. This suggests that numerosities are
converted into a mental format of approximate magnitudes.

Animals and infants can only enumerate small collections (up to three or four)
precisely. Higher numbers are represented approximately; they can only be

discriminated if the ratio difference between them is large enough. Six-month-
olds, for example, can discriminate between 8 and 16, but not between 8 and 12

(Xu & Spelke, 2000). One way to explain this finding (e.g., Dehaene, 2003) is to posit
a logarithmically compressed mental number line on which magnitudes are mapped

conforming to the natural logarithm of the number. Each magnitude is represented
by a Gaussian tuning curve, which increasingly overlaps with curves distributed along
other magnitudes. Accordingly, the perceived distance between larger numbers

(e.g., 8 and 10) is smaller than between smaller numbers with the same absolute
difference (e.g., 2 and 4), which could explain why numerosities <4 are easier to tell

apart. For the purpose of this paper, I shall take this logarithmic number line as
a model for intuitive numerical representation.1

Remarkably, adult numerical cognition still depends on this approximate,
logarithmic scale. This is most evident in number comparison tasks, where adults

respond faster for small numerosities (e.g., two vs. three is easier than eight vs. nine)
and for numerosities with a large absolute difference (e.g., three vs. eight is easier
than seven vs. eight); in fact, their performance is almost identical to that of rhesus

monkeys who are trained to perform the same task (Brannon & Terrace, 2002).
People from cultures without exact number words (e.g., Pica, Lemer, Izard, &

Dehaene, 2004) display an intuitive number representation that is very similar to that
of nonhuman animals; they perform relatively accurately in the lower numerosities

and exhibit a rapid increase in error rate as numerosities increase.
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3. Two Cognitive Routes for Number Words

3.1. Counting

How are humans able to overcome these cognitive limitations and to represent larger
cardinal values precisely? Most scholars (e.g., Pica et al. 2004, p. 503) agree that

a counting routine is necessary and sufficient for natural-number representation.
To count, one establishes a one-to-one correspondence between each countable item

and consecutive symbols in a list with a fixed ordinality (e.g., the number words
‘one’, ‘two’, etc.). The final item tagged determines the last tag from the counting
sequence, which in turn denotes the cardinality of the set. Making correspondences

between collections is part of our innate cognitive architecture: both infants and
nonhuman animals can recognize whether two sets of stimuli have the same number

of elements (see also Decock, this volume). Seven-month-olds, for example, can
match the number of voices they hear to the number of speakers they see (Jordan &

Brannon, 2006). Rhesus monkeys, chimpanzees and lions show similar capacities:
they can compare the number of conspecifics they hear to the number of individuals

they see (e.g., McComb et al., 1994). However, humans are not innately furnished
with a stably ordered counting list. External media, such as body parts or tallies,
may be able to supplement our approximate numerical representation with a list of

counting symbols (De Cruz, 2006). They provide the necessary conceptual stability,
thus enabling us to discriminate between numerosities that would otherwise be

indistinguishable (e.g., five and six).
To be semantically accessible, external symbolic number representations are linked

to the logarithmic mental number line. This is most aptly demonstrated by
neuroimaging studies (e.g., Eger et al., 2003), that indicate that passively hearing

spoken number words or perceiving arabic numerals activates the same neural
circuits that are implicated in approximate numerical cognition, namely the bilateral

intraparietal sulci. The tendency to understand symbolic numerical stimuli in terms
of approximate numerosities seems irresistible, and even occurs when we are
confronted with numerical symbols of which we do not know the precise meaning.

Masataka, Ohnishi, Imabayashi, Hirakata and Matsuda (2007) presented mono-
lingual Japanese adults with roman numerals (e.g., CMXCIX), which are unknown in

Japan. Initially, the subjects’ neural activation (as indicated by the blood oxygen level
dependent signal in the functional magnetic resonance imaging [fMRI] experiment)

showed the typical linguistic pattern for letter processing. Upon learning that these
shapes actually represent numerosities, subjects immediately showed strong

activation in a network of brain areas involved in numerical processing, such as
the bilateral inferior and superior parietal lobule. Although none of the subjects could
even remotely identify these numerals, their brains showed numerical activation

patterns at the simple presentation of the unknown numerical stimuli.
Given that counting lists provide us with exact cardinal values, it seems remarkable

that numerate individuals should continue to rely on their approximate
number representation. One reason to associate symbolic representations with the

fuzzy and imprecise number sense is that only the latter gives us semantic access to
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numerosities, enabling us, for example, to judge very quickly and without calculation

or counting that 6 is smaller than 9, or that 3þ 5 cannot be 15. Indeed, while patients

with brain damage to the intraparietal area can typically recite calculations they learnt

by heart (e.g., multiplication facts), they make puzzling errors in calculations that are

not learnt by heart, such as division or subtraction (Lemer et al., 2003). Furthermore,

the linkage between numerical symbols and approximate numerosities allows us to

reason about numerosities in a purely symbolic format, without actually observing

collections of items, which significantly expands our ability to deal with number.

3.2. Approximate Number Words

People from innumerate cultures do not have a conventionalized counting routine,

but rather estimate numerosities directly and only subsequently convert this

approximate representation into a linguistic format. The Mundurucu (an Amazonian

culture from Brazil) only possess number words up to five. However, they do not use

these words in counting routines, but make approximate comparisons between

numerosities and collections that are easily available. For example, they use the

expression pũg põgbi (‘a hand’) not only for collections of 5 items, but also for

collections ranging from 4 to 12 items. Thus, the mere presence of number words is

not sufficient to promote natural number representation. Rather, number words can

emerge from two distinct cognitive routes: they can be representations of exact

cardinal values, emerging from the use of counting words, or they can be linguistic

expressions of perceived approximate numerosities, as is the case of the Mundurucu

and other cultures with few number words. In numerate adults, this second,

approximate use of number words is also apparent in expressions like ‘a couple of

days’ or ‘about 50 people’. When there is no strong cultural incentive to denote

cardinal values (e.g., lack of monetary commerce), this latter system may be

sufficient, and counting routines may not develop.

Once the need arises to denote numerosities more precisely, approximate number

words can serve as the basis of a counting list, which explains why in so many

languages, some number words are etymologically related to the word for ‘hand’ or

‘finger’. For example, while older speakers of Martu Wangka (a Western Australian

Aboriginal language) use the words marakuju and marakujarra in an approximate

fashion to denote ‘about a hand’ and ‘about two hands’, younger speakers use these

terms as the precise numbers 5 and 10 (Harris, 1982, p. 167). This is probably due to

an increasing participation in the monetary economy, as is aptly illustrated by the

Tiwi, an Aboriginal culture from Melville Island, Australia, whose numerical
competence strongly correlates with the degree to which they participate in monetary

economic activities (McRoberts, 1990, pp. 35–36).

4. Interactions between External Media and Internal Cognitive Processes

There are differing views on the relationship between external media and internal

cognitive processes. One popular position in cognitive science and philosophy of
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mind (e.g., Fodor, 1975) holds that external representations merely serve as input to

the internal mind. According to this approach, numerical cognition only takes place

after we convert arabic numerals and number words into some inner code. Some

scholars (e.g., Clark, 2006) instead argue that external representations need not be

represented internally to be involved in numerical cognition. In this view, much of

human cognition is essentially hybrid: it involves a complex interplay between the

brain and external resources, and it is often impossible to demarcate sharp

boundaries between internal and external cognition. A third position (e.g., Donald,

1991) asserts that external cognitive resources shape the mind in the strong sense that

they actually alter our cognitive architecture. Compelling evidence for this claim

comes from studies on the effects of literacy and music on the brain. Petersson, Silva,

Castro-Caldas, Ingvar, and Reis (2007) compared MRI scans of literate and illiterate

subjects from similar socioeconomic background and found illiterates to be more

right-lateralized and to possess more white matter. In their comparison of brains of

professional musicians, musical amateurs and nonmusicians, Gaser and Schlaug

(2003) found that musical competence correlates with an increase in grey matter in

motor, auditory and visual-spatial brain regions. This influence of culture on the

brain can be explained by the mechanism of Hebbian learning, which assumes that

a repeated and persistent excitement of one neuron by another results in metabolic

changes in both cells which increases their connectivity, a process known as long-

term synaptic potentiation. In the case of number, cultural exposure to symbolic

numerical representations during early cognitive development could result in long-

term synaptic potentiation between populations of number-sensitive neurons, such

as those in the intraparietal sulci, and neurons involved in high-level processing

of other domains, such as body-part representation or language. In the following

subsections, I discern five ways to represent natural numbers externally that are

salient across cultures: number words, body parts, tallies and tokens, numerical

notation systems and gestures. For each of these instances, I will attempt a more

precise formulation of how internal and external representations interact to yield

natural numbers.

4.1. Number Words and Language

The role of language in the development of natural number concepts has been the

focus of intense debate. This controversy is fuelled by the fact that both grammatical

language and the ability to represent natural numbers accurately seems to be

restricted to humans. Even chimpanzees who received intensive training on arabic

numerals never generalize to the counting procedure that children master with ease

(Biro & Matsuzawa, 2001). Hauser, Chomsky and Fitch (2002) explain these

observations by invoking a uniquely human domain-general recursive capacity that

underlies both natural language and natural numbers. This ability, which allows us to

generate a potentially infinite array of expressions from a limited set of elements,

would help children to realize that they can come up with higher and higher

numbers. However, there is little support in the neuropsychological literature for the
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implicit prediction that linguistic and mathematical recursive tasks would recruit

similar brain networks. Varley, Klessinger, Romanowski and Siegal (2005)

investigated numerical skills in three profoundly agrammatic patients. Despite

their inability to produce grammatical language, all patients could accurately solve

multiple-digit calculations. They also scored well on questions on infinity, e.g., when

asked to produce several numbers smaller than 2 but larger than 1, subjects came up

with solutions like 1.9999. Varley et al. (2005) proposed that the mature cognitive

system contains autonomous, domain-specific structures for both language and

mathematics that deal with recursive structure. Martı́n-Loeches, Casado, Gonzalo,

de Heras and Fernández-Frı́as (2006) examined the event-related potential (ERP)

responses in subjects presented with mathematical reasoning tasks in an order-

relevant format, such as bracket expressions in the form of 4� (10� 3). Although

these problems closely mirror syntactical structures, they did not recruit any brain

areas which are related to syntax or linguistic working memory. Moreover, in many

cultures that possess few number words, counting is supplemented by tallies (such as

marks on the ground) or body-part counting (see, e.g., Wassman & Dasen, 1994,

on Yupno counting). Therefore, language may be only one of many cognitive routes

that lead to successful natural number representation.

Natural language may play a role in the weaker sense that it is a possible external

medium through which we can denote exact cardinal values. The frequent use of

number words in everyday discourse helps children to understand that natural

numbers are specific, rather than approximate, as their innate number sense would

lead them to suggest. Indeed, Sarnecka and Gelman (2004) found that 2.5-year-old

children understand that number words are specific, before they can actually count.

These children can predict, for example, that a box with six objects to which another

object is added, no longer contains six objects.
Since number words play an important role in denoting exact cardinal values, we

can expect that linguistic areas are mainly recruited for numerical tasks that involve

exact numerical magnitudes. Neuroimaging studies (e.g., Dehaene et al., 1999) show

that exact calculation recruits extensive parts of the perisylvian language-related area,

whereas approximate calculation yields a stronger activation of the intraparietal sulci.

Patients with brain lesions in language-related areas (e.g., Lemer et al., 2003) have

impaired exact calculation, while their ability to perform approximate calculations

remains relatively intact. As we have seen, in subsection 3.1., number words can be

used as external anchors to denote exact cardinal values and are thus more

extensively used in exact calculation. This concurs with Locke’s (1689/2004, bk. 2,

ch. 16) idea that language is not necessary for number representation, but that it can

‘‘conduce to our well-reckoning’’ by providing publicly distributed counting

symbols.

4.2. Body Parts

Body-part counting features in many cultures. Several Indo-European

number words derive from body-part terms, suggesting an underlying body-part
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counting system: the word ‘four’ is related to the Proto-Indo-European word for

‘finger’; ‘five’ in many Indo-European languages is related to the Proto-Indo-
European word for ‘hand’ (Butterworth, 1999, pp. 66–67). Some cultures possess

more elaborate systems, such as the Papua New Guinean Okapsmin, who count on
their fingers, facial features, shoulders and arms, which are touched and named in

a conventionalized stable order (Saxe, 1981). In such systems, individual body parts
refer to quantities in much the same way as our number words: in a counting

context, the Okapsmin term for ‘right shoulder’ always denotes 18. Intriguingly, body
parts are also often used by people who do not possess formalized counting routines,
as was already reported by Locke (1689/2004, bk. 2, ch. 16). The Mundurucu

numerical expressions, studied by Pica et al. (2004), include such terms as pũg põgbi
(‘one hand’), eba (‘your two arms’), and even ‘all the fingers of the hands and then

some more’ (given by one subject in response to 13 dots). A possible reason why
body parts feature so prominently in counting and approximate number word

representation may be that the neural structure that represents fingers and other
body parts—the body schema, situated in the left intraparietal lobule—lies

anatomically close to number-sensitive neurons in the intraparietal sulci.
Establishing a synaptic potentiation is easier between areas that are anatomically
close (De Cruz, 2006). Moreover, the body schema is an ideal candidate for a list of

symbols with fixed ordinality because it represents body parts in an ordered fashion.
Experimental studies (e.g. Le Clec’H et al., 2000) show that the comparison of body

parts is prone to a distance effect similar to that in number comparison: subjects are
faster at judging that the eyes are higher than the knees than at judging that they are

higher than the nose; likewise it is easier to assess that eight is bigger than two, than
to see that eight is bigger than seven.

To what extent does the cultural link between magnitudes and body parts
influence the structure of the human brain? Studies that measure changes in

corticospinal excitability of the hand muscles (e.g., Andres, Seron, & Olivier, 2007)
indicate that numerical tasks such as counting and number comparison result in an
increased excitability of the hand muscles, while other muscles (such as those of the

foot) remain unaffected. Sandrini, Rossini, and Miniussi (2004) found that briefly
disrupting the left intraparietal lobule (implicated in finger recognition) through

repetitive transcranial magnetic stimulation causes a marked increase in reaction
time when subjects complete a number comparison task. Similarly, a temporary

disruption of the right angular gyrus results in both finger agnosia (the inability to
individualize one’s own fingers) and a decline in number processing (Rusconi,

Walsh, & Butterworth, 2005). Taken together, these studies suggest that Western
adults, who no longer use fingers to solve simple arithmetical problems, nevertheless
continue to use the internal cognitive architecture that represents fingers in

numerical tasks. Western children, especially preschoolers and first-graders often
resort to finger counting when they solve arithmetical problems, perhaps because

Western number words are quite irregular (Geary, Bow-Thomas, Lin, & Siegler,
1996). Hebbian learning provides a compelling explanation to account for this

continued use of finger representation in adult numerical cognition.
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4.3. Tallies and Tokens

Tallies are the oldest archaeologically attested representations for numerosities.

Artifacts in bone or antler which show regular incisions or notches are present in

the archaeological record from about 70,000 to 50,000 Before Present (Cain, 2006).

Some of these objects were probably tally sticks, with engravings that gradually

accumulated over time. Other notched artifacts, such as the La Marche antler

(d’Errico, 1995) show a clear and intentional morphological differentiation between

sets of notches, indicating that several collections of items were being counted.
However, tokens have also played an important role in historical literate cultures.

In Western culture up to the introduction of the hindu-arabic positional system,

calculations were frequently made by moving counters on a surface known as the

abacus. Western abacus calculation was positional. Values were assigned on an ad hoc

basis: the same positions and objects could stand for 10s or 100s, depending on the

calculation required. As Netz (2002, p. 9) observed, abaci were not just some aid

in the manipulation of numbers, they were the principal medium of calculation.

The then available numerical notation systems, such as the Greek alphabetic

numerals, proved far too cumbersome for calculation and were therefore rarely used

as such. The Greek alphabetic system used 27 distinct signs for the numerical ranges

1–10, 20–90, and 100–900 (Chrisomalis, 2004), which meant one had to learn many

multiplication and addition facts by heart, placing heavy demands on working

memory and often leading to substantial errors. Consider the addition 80þ 20.

In Greek alphabetic numerals, one needs to retrieve the addition �þ �¼ � from

memory, whereas an abacus user can simply place one counter on the ‘fifty’ line and

three counters on the ‘ten’ line, where he adds two more counters. Five counters on

the ‘ten’ line means that he can move one counter to the ‘fifty’ line, which in turn

allows him to put one counter on the ‘hundred’ line. Since no rules further allow him

to move counters, the calculation is completed. The only internal cognitive operation

he has to perform, is counting up to five. Another example is ancient Chinese

arithmetic and algebra, which were based on the manipulation of counting rods,

which were arranged in groups of five. By manipulating these rods, Chinese

mathematicians of the Han dynasty (206 BC to AD 220) came up with matrix solutions

for simultaneous linear equations: they simply arranged the counting rods in rows

and columns, where each row corresponded to the coefficient of an unknown and

each column represented an equation (De Cruz, 2007). In contrast, European

mathematicians only invented matrix solutions in the eighteenth century, probably

because the arabic numerals are less suited for this external cognitive operation.

However, the use of counting rods in Chinese arithmetic and algebra preserved the

concreteness of the calculations, thereby preventing Chinese mathematicians from

developing general solutions to higher-degree equations (Chemla, 2003), which

Western mathematicians could do by using symbols to denote variables and

unknowns. The abacus and the counting rods were integral and irreducible parts of

mathematical cognition, allowing hybrid modes of thought in which internal and

external resources were tightly interwoven.
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Does the enduring use of tokens also influence our cognition in the stronger sense

that they cause synaptic reorganization? Support for this view comes from an fMRI

study by Tang et al. (2006), which compared brain activation of native Chinese

speakers and English speakers who performed comparison and addition tasks.

Although intraparietal sulcus activation was common to both groups, English

speakers relied more on the language-related left perisylvian area, whereas Chinese

speakers showed more activation in the premotor cortex. A plausible explanation for

this finding lies in cultural differences in arithmetic teaching, in particular abacus

instruction in Chinese education. Chinese abacus users can mentally visualize and

manipulate abacus beads while solving mathematical problems. The premotor cortex

is normally involved in planning complex movements in response to particular

stimuli. The activation of this area during numerical tasks in Chinese speakers could

thus be explained by their use of a mental abacus. It is interesting to note that

Japanese expert abacus users can perform mental arithmetic involving very large

numbers (up to 16 digits) with remarkable accuracy by imagining a soroban, the

traditional Japanese abacus. When primed with subliminally presented abacus beads

in configurations not related to the problem, their performance drops markedly

(Negishi et al., 2005). These studies suggest that users of the abacus internalize the

operations they perform in the world (the manipulating of abacus beads) when they

do mental arithmetic, fostering synaptic potentiation between number-sensitive

neurons and neurons in the premotor cortex.

4.4. Numerical Notation Systems

Numerical notation systems are visual and primarily nonphonetic structured systems

for representing numbers. Signs such as 9 or IX are part of numerical notation

systems, words like ‘nine’ or ‘quatre-vingt’ are not. Over the past 5,000 years, more

than 100 numerical notation systems were developed worldwide, many of which have

now been replaced by the hindu-arabic numerals (Chrisomalis, 2004). Numerical

notation systems typically emerge in large-scale societies, where trade, public works

or taxation require calculation with large numbers. They enhance our cognitive

capacities by representing some aspects of numerical tasks externally, so that they

do not need to be represented internally, which would require additional cognitive

resources (Zhang & Norman, 1995). For example, positional systems use place value,

which externalizes some information on the size of the number: the value of a given

numeral sign is partly determined by its position among the signs in the numeral

phrase. However, this does not allow us to decide which of two numbers is largest if

they have the same highest power value, such as 94 and 49. Whether 4 is smaller or

bigger than 9 cannot be derived from the shape of the numerals. Before we can decide

whether 49 is bigger or smaller than 94, we have to retrieve the cardinal values of 4

and 9 from memory. In contrast, the Egyptian hieroglyphic system represents 1 as j, 2

as jj, and 3 as jjj, thereby representing some information on magnitude externally

through the shape of the numerals. Consequently, all calculations with numerical

notation systems involve an interplay of internal and external cognitive resources.
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For example, a multiple-digit calculation in arabic numerals requires one to retrieve

the value of the shapes of the numerals from memory and to remember

multiplication and addition facts, while carrying numbers and remembering partial

solutions can be performed externally. Several studies (e.g., Zhang & Wang, 2005)

support this important role of external representations in numerical tasks, showing

that the format in which numbers are presented influences processing speed and

accuracy. In this sense, pen-and-paper calculations are hybrid modes of thought,

where cognitive performance depends on the complex interplay between internal

cognitive operations and external media.

Nevertheless, even though numerical notations are not simply translated into an

internal symbolic code, they influence internal cognitive processing. Children as

young as five years show a number-specific brain response (as measured by ERP)

when they compare arabic numerals, a response virtually indistinguishable from

comparing nonsymbolic numerical presentations such as collections of dots (Temple

& Posner, 1998). Moreover, as we have seen in subsection 3.1., passively viewing

arabic digits (e.g., ‘3’) yields activation in the parietal sulci, whereas viewing letters

(e.g., ‘A’) does not (Eger et al. 2003). This indicates that the brain converts arabic

digits into numerosities fast and automatically. Psychological studies on symbolic

and nonsymbolic numerical representation (see, e.g., Verguts & Fias, this issue) have

yielded conflicting results: some studies show that numerals are converted into an

internal mental format very similar to that of nonsymbolic number; others suggest an

irreducible role of numerical notation systems in cognitive processing. This problem

can be elucidated when we consider it from an extended mind perspective: although

numerical notation systems are irreducible to internal cognitive processes, we

nevertheless need to convert symbolic numerical representations into mental

magnitudes to be able to manipulate them and to gain semantic access to them.

4.5. Gestures

Across the world, gestures are used to denote cardinalities. Contemporary Chinese

use hand gestures to denote numerosities up to 20, and well into the twentieth

century, French peasants employed an elaborate system of hand gestures to perform

multiplications, such as 7� 8 (Dantzig, 1947). Young children spontaneously point

and gesture when they count. Gesturing lightens cognitive demands by establishing

which objects have already been counted. Indeed, under experimental conditions,

children have more difficulties in counting when they are prevented from gesturing

or pointing (Alibali & DiRusso, 1999). Even in numerate adults, preventing pointing

and touching has marked effects on numerical performance. If adult subjects are

asked to count a collection of coins without being allowed to touch or point to them,

the result is that over half of the subjects give a wrong answer. Once they are allowed

to touch or gesture, the error rate falls to nearly 20% (Kirsh, 1995). Interestingly,

neural structures that are typically recruited during gesturing, pointing and visual

attention lie very close to the number-sensitive neurons in the intraparietal sulci

(Simon, Mangin, Cohen, Le Bihan, & Dehaene, 2002). The formation of new synaptic
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connections may be easier between two anatomically adjacent areas. Culture may key

in on this architectural property of the human brain by creating synaptic connections

between them.

5. Discussion and Concluding Remarks

This examination of natural number representation shows that external media are

a necessary and irreducible part of human numerical cognition. In accordance with

Clark (2006), I argue that external media together with the internal cognitive

processes involved in number form a hybrid cognitive process. Next to this, I make

a relatively strong claim for the interaction between internal and external cognitive

resources. The enduring use of external media results in structural changes in the

brain: the cognitive scaffolding we use to accurately represent cardinalities (number

words, body parts, tokens, numerical notation systems and gestures) is recruited in

numerical cognition alongside the number-sensitive neurons. For instance, body-part

recognition (finger counting) is recruited for solving numerical tasks involving arabic

digits. Natural number representation is only possible when we supplement the

internal cognitive architecture involved in numerical processing with external

resources. One could object to this view that it is easy to calculate 3� 7 mentally and

that external media are therefore not necessary for natural number representation.

However, such calculations are only possible through an extensive cultural

familiarization with arabic numerals or number words. It is interesting in this

respect to compare the performance in arithmetical tasks of two small-scale societies,

the Mundurucu and the Yupno. Although the Mundurucu have approximate

number words up to five, they fail to produce a correct result when subtracting four

dots from a total set of six dots (i.e., 6� 4), although the result is small enough to be

named in their approximate number word system (Pica et al., 2004). The reason for

their failure lies in the fact that their number words are not natural numbers but

approximate number words. In contrast, the Yupno, an Aboriginal culture from

Papua New Guinea, who have a body-part counting system that goes up to 33, can

solve tasks such as 12þ 13 or 19� 8, the latter by reversing the problem into an

addition, counting up from the smaller to the larger number by naming the different

body parts (Wassman & Dasen, 1994, p. 89). They can do this, because in a counting

context the body-parts serve as exact number symbols.

It is worthwhile to consider Dartnall’s (2005) internalism in this discussion.

Internalism mirrors externalism in the sense that ‘‘the world leaks into the mind.’’

As an illustration, Dartnall considers a person who observes an uncompleted jigsaw,

who leaves the room and then realizes—through mental rotation—how one of the

remaining pieces fits in the puzzle. This mental rotation of the observed piece is an

epistemic action, since it tells him something he did not know before. We could

speculate that any kind of extended mind entails some kind of internalism: we use

external media that represent numerosities as epistemic tools by manipulating mental
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representations of them to solve numerical problems that are otherwise intractable

to us, as in the case of skilled abacus users who resort to a mental abacus to solve

multiple-digit calculation (Negishi et al., 2005).
External symbolic representations of natural numbers are not merely converted

into an inner code; they remain an important and irreducible part of our numerical
cognition. Natural language is one among several tools that allow us to map exact

cardinalities onto our approximate logarithmic mental number line. During

cognitive development, the structure of the brain is adapted to the external media
that represent natural numbers in the culture where one is raised. In this way, the

interaction between internal cognitive resources and external media is not a one-way

traffic but an intricate bidirectional process: we do not just endow external media
with numerical meaning, without them we would not be able to represent

cardinalities exactly.
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Note

[1] There are many alternative theoretical models to explain numerical skills in infants and
nonhuman animals, including linear mental number lines with scalar variability, two core
systems of number (one for small numerosities up to three or four and another for larger,
approximate magnitudes) and object files. However, the choice of the model does not matter
for the argument I am developing here.
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